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Abstract

Understanding how Transformers work and how they process information is key
to the theoretical and empirical advancement of these machines. In this work, we
demonstrate the existence of two phenomena in Transformers, namely isolation
and continuity. Both of these phenomena hinder Transformers to learn even simple
pattern sequences. Isolation expresses that any learnable sequence must be isolated
from another learnable sequence, and hence some sequences cannot be learned by
a single Transformer at the same time. Continuity entails that an attractor basin
forms around a learned sequence, such that any sequence falling in that basin
will collapse towards the learned sequence. Here, we mathematically prove these
phenomena emerge in all Transformers that use compact positional encoding, and
design rigorous experiments, demonstrating that the theoretical limitations we shed
light on occur on the practical scale.

1 Introduction

The massive adoption of generative artificial intelligence (AI), and in particular the use of Large
Language Models (LLMs), has lead to a growing interest in understanding how these machines work
and what they can and cannot compute [5]. While this endeavor has been primarily addressed from
an empirical, task performance perspective [11, 9, 3], it has now become clear that a fundamental
theoretical understanding of the Transformer (the architecture behind the success of LLM-based
applications [18]) is a crucial step towards explaining and overcoming the observed limitations.
[2, 19, 7]. This paper is a contribution to a recent trend of work devoted to the development of such
an understanding by revealing the mathematical properties of Transformers [16] that underlie these
limitations.
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1.1 Our contribution

In this work, we identify two fundamental properties of Transformers: Isolation and continuity (see
below), which severely constrain their core abilities to display (even mild) intelligent behavior.

As a case study, consider the following scenario inspired by tests such as IQ. Given a sequence of
symbols generated by a simple rule, an “intelligent agent” (a human or an LLM) is presented with
an initial finite portion of the sequence and asked to guess the next symbol. The agent is allowed to
request to see more symbols in the sequence before providing an answer. Thus, the challenge is to
eventually understand the underlying pattern and apply it.

For example, if the presented sequence is “00000000000000000000”, we would expect the agent
to understand the underlying constant pattern and answer “0”. If the presented sequence is now
“1231231231231231231”, we would still expect the agent to understand its periodic pattern and
answer “2”. A slightly more complicated sequence would be “10100100010”. What is the underlying
pattern? perhaps this sequence seems too short to confidently recognize it, so we request some more
symbols and get

“10100100010000100000100000” (1)

The pattern now is much more clear, let us call it the increasing spacing pattern: the 1s are separated
by growing blocks of 0s, each time with one more 0. Before the last 1, we see five 0s, so we expect
the agent to answer “0” to complete, after the last 1, a block with six 0s.

Given the immense practical success of LLMs, one could think that these kinds of simple patterns
would be easy for them to recognize. In this work, we argue that this is not the case for a large class
of Transformers that includes most of the modern LLMs. Namely, we show that for decoder-only
Transformers with compact positional encoding (CPE), the set of sequences that they can “learn”
in the above sense is rather limited. As we will see below, these limitations have several strong
practical implications.

We consider Transformers that, when presented with some prompt, compute a probability distribution
over the set of tokens. Now, let us say that a Transformer T eventually learns an infinite sequence
of symbols α = α1α2α3 . . . if, for any long enough prefix of α that is presented to T , when asked
“what is the next symbol in the sequence?”, the token that has the highest probability according to the
distribution computed by T is the symbol in α that comes after this prefix.

Here, we require that the probability of the most likely token is at least some positive constant larger
than the probability of any other token. This constant may depend on α and can be arbitrarily small,
but it has to be independent of the length of the prompt. This is exactly when the top probability can
be made arbitrarily close to 1 by setting the temperature to some small but fixed positive constant,
making sure that T outputs the correct prediction with high probability.

Isolation. We establish a phenomenon of isolation in the learnability landscape of any decoder-only
CPE Transformer T . More specifically, we show that any infinite sequence α that is eventually
learned by T must necessarily be isolated from any other infinite sequence that is also eventually
learned by T . This means that there is a ball of positive radius δ around α in the space of infinite
sequences such that no other sequence within this ball (except for those that differ from α in only
finitely many places) can also be eventually learned by T . The ball is taken with respect to the relative
Hamming distance, that is, it consists of all sequences that differ from α in a set of positions whose
asymptotic frequency is at most δ. This phenomenon is illustrated in Figure 1a.

Representational collapse and continuity. What prevents a ball around α from containing other
sequences that are also learnable by T is a strong form of representational collapse within the ball.
Namely, for any sequence β within the ball, the output distributions of T on any two long enough
prefixes of α and β of the same length, will be so close that the top-probability token will be the same
for both prefixes, namely the next symbol of α. Now, if β differs from α at infinitely many places, T
must necessarily make infinitely many mistakes in predicting β, which is therefore not eventually
learned by T .

Such representational collapse follows from our main technical result, which is continuity of decoder-
only CPE transformers. Intuitively, continuity means that making some small modifications to a
prompt cannot uncontrollably change the distribution computed by a Transformer. More precisely,
as long as T is a decoder-only CPE Transformer, for any ε > 0 there exists a threshold δ > 0 such
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that, to produce a change by more than ε in the distribution computed by T on a given prompt, it is
necessary to change at least a δ-fraction of the tokens in the prompt (excluding the last token, which
we always assume remains unchanged). Notably, the value of δ for a given ε depends only on T . See
Figure 1b for an illustration.

(b) Continuity

Σω

T(𝛼) T(𝛽)
σ3
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Figure 1: Isolation and Continuity in decoder-only Transformers. (a) Isolation: Illustration of
the isolation phenomenon in the space of infinite sequences Σω . Only a few sequences (black dots)
are eventually learnable by the Transformer T , and each is surrounded by a region where no other
distinct sequence is learnable (blue dot). (b) Continuity: This figure illustrates how two similar
input sequences α, β ∈ Σn of length n ≥ 3 over the alphabet Σ = {σ1, σ2, σ3}, which share the final
token (αn = βn) and differ in two positions (dH(α, β) = 2/n ≤ δ), are mapped by the Transformer
T to probability distributions with at most ϵ distance in the simplex ∆(Σ).

Implications. It is not hard to see that for any particular infinite sequence α, there exists a decoder-
only CPE Transformer that eventually learns it (one can store α inside the positional encoding).
Arguably, a Transformer tailored like this to learn a single sequence is not very useful. We show that
learning even a single additional sequence might already be problematic for LLMs. For example,
isolation implies that there is no decoder-only CPE Transformer that can eventually learn both the all-
0 sequence and the increasing spacing pattern sequence illustrated in equation (1). Indeed, although
they differ at infinitely many positions, the frequency of positions where they differ converges to 0.
This means that any positive-radius ball around the all-0 sequence must also contain the increasing
spacing sequence from (1). Hence, by isolation, no decoder-only CPE Transformer T can eventually
lean both sequences. As a result, we see that not every pair of infinite sequences α and β can be
eventually learned by a single decoder-only CPE Transformer.

One may argue that the pattern in (1) is too complicated, since it essentially boils down to counting, a
task in which Transformers have been reported to struggle before [1, 20]. But what about periodic
sequences? They are arguably the simplest infinite family of patterns. In fact, one can show that for
any finite set of periodic sequences, there exists a decoder-only CPE Transformer T that eventually
learns them all. However, our results imply that the set of all periodic sequences is impossible to
be eventually learned by any single Transformer. Indeed, for any T that learns the all-0 sequence
there is, by isolation, a ball of some positive radius δ around the all-0 sequence such that no other
sequence in this ball that contains infinitely many 1’s can also be eventually learned by T . But for
any k > 1/δ, this ball includes the following periodic sequence:

β = 00 . . . 01︸ ︷︷ ︸
k

00 . . . 01︸ ︷︷ ︸
k

00 . . . 01︸ ︷︷ ︸
k

. . . , (2)

which therefore cannot be learned by T .

More generally, let us consider the concept of overwhelming strings introduced in [15]. For a
given transformer T , a string of tokens s, a fixed final token q, and an integer m, we say that T is
“overwhelmed” by s if the output of T evaluated on s plus any additional string t and fixed final
token q, T (s+ t+ q), is the same regardless of the chosen string t, as long as its length is at most
m. In other words, being overwhelmed by some string s means that T is completely insensitive to
the part of the prompt that contains t. As pointed out by [15], this has several important practical
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consequences. For instance, it can be used to show "no-go" results in prompt engineering, or to prove
severe limitations of transformers to compute highly sensitive functions (such as PARITY). As an
immediate consequence of our work, it follows that if α is an infinite sequence eventually learned by
T , then T must be overwhelmed by any sufficiently long prefix s of α. Indeed, by isolation, there
exists δ > 0 such that appending m arbitrary tokens to s (but keeping the same final token) leaves the
output of T unchanged whenever m/(|s|+m) < δ, where |s| denotes the length of s. In particular,
T will be overwhelmed by any such s.

1.2 Related work

As we have already mentioned, our work shows that every Transformer is overwhelmed by infinitely
many strings, a concept introduced in [15]. Their results are however of a different nature, as they
focus on developing algorithms to rigorously detect whether a given Transformer T is overwhelmed
by a given string s. Our work is of theoretical nature, proving continuity and isolation and stipulating
the associated limitations in decoder-only Transformers.

Continuity has been used before to demonstrate difficulties that Transformers have in learning func-
tions where small changes in the input leads to a substantive change in the output (e.g., PARITY) [6].
Moreover, it was shown that for such functions, as the sequence length increases, the loss landscape
becomes more steep, leading to further complications in the learning process [7]. Importantly,
previous continuity results have only been established for encoder-only Transformers, where each
token attends to the whole input, not only to previous tokens as in the decoder-only case (i.e., with
causal masking). Under the encoder-only assumption, due to dispersion of softmax coefficients [19],
flipping the value of one token leads to a O(1/n)-change in other tokens [6].

The same is not verbatim true for the decoder-only architecture, and this constitutes the main difficulty
of extending continuity to it. The problem is that causal masking breaks the symmetry of tokens in
softmax, and earlier tokens have more influence. Flipping, say, the first token, leads to significant
changes not only in itself but in the few first tokens also, given that softmax coefficients are not too
dispersed for them yet. A careful argument is required to show that this effect can be controlled, and
this is the main technical contribution of our paper.

Representational collapse in transformers, as far as we are aware, has been previously observed by
Barbero et al. [1] only in the special case of two input sequences that are identical except that we
repeat the last token in one of them (which is therefore one token larger). Moreover, their result
requires two important assumptions: (i) the distance between the coordinates defining the positional
encoding tends to 0 as the input sequence length increases, (ii) the absence of positional information
at the level of Value matrices. Whereas the second assumption is in line with the widely used and
state-of-the-art rotatory positional encoding method [17], it does not allow to extrapolate the results
to other positional encoding methods. The first assumption is simply absent from any standard
application of LLMs.

In comparison, our results apply in much more generality. We just need the value, the attention, and
the activation functions to be continuous. Therefore, they apply far beyond the standard dot-product
softmax attention with activations computed by MLPs, – even the Lipschitz property, crucial for
the Hahn’s continuity argument [6], is not required for our proof. Besides, as mentioned before, we
require compactness of the positional encoding, but in contrast to [1], we can freely use it at the level
of values, not only in attention.

1.3 Experiments

In the remainder of the paper, we first define the continuity theorem (Section 3), followed by the
isolation one (Section 4). All the proofs of our theorems and lemmas can be found in Appendix A.
For each theorem we present a series of experimental results to illustrate the extent to which the
limitations predicted by our theorems can be observed in practice. We do this for several of the most
recent versions of modern LLMs. We investigate continuity in two applications: the all-0 sequence
and a more practical Python code syntax error detection task. For isolation, we evaluate how well
decoder-only models can generate periodic sequences. Our results not only provide strong evidence
that our theoretical findings are relevant in practice, but also offer a comprehensive picture of how the
specific differences among these modern architectures affect the severity of the observed limitations.
Code for our experiments can be found at doubts-and-dilemmas-neurips25-6CF8.
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2 Preliminaries

By ∥ · ∥ in this paper we mean the l∞-norm, but all our results hold for any other norm due to the
equivalence of any two norms in Rd up to a constant factor.

Attention layers The main part of the Transformer architecture (see Figure 5) is the attention layer.
Definition 1. A d-dimensional decoder-only attention layer is a function L : (Rd)∗ → (Rd)∗, given by
a “positional encoding” p : N2 → Rd, a continuous “value function” val : Rd → Rd, a continuous

“weight function” w : (Rd)3 → (0,+∞), and a continuous “activation function” F : Rd×Rd → Rd.

Given an input sequence of vectors x̄ = (x1, . . . , xn) ∈ (Rd)n, the layer L outputs a sequence of
vectors ȳ = (y1, . . . , yn) = L(x̄), computed as follows. First, one computes the “attention weights”
and “values”:

wij = w(xi, xj , p(i, j)), i, j = 1, . . . , n, i ≤ j

vj = val(xj), j = 1, . . . , n.

then a sequence ā = (a1, . . . , an) of “attention vectors” as follows:

aj =
w1jv1 + w2jv2 + . . .+ wjjvj

w1j + w2j + . . .+ wjj
, j = 1, . . . , n,

and finally, one sets:
yj = F (aj , xj), j = 1, . . . , n.

Observe that yj , the j-th output of L on input (x1, . . . , xn), depends only on x1, . . . , xj . This implies
that decoder-only attention layers are “prefix-monotone” functions: if a x̄1 is a prefix of x̄2, then
L(x̄1) is a prefix of L(x̄2).

A positional encoding p : N2 → Rd is called compact if there is a compact K ⊆ Rd such that
p(i, j) ∈ K for all i, j ∈ N.

Transformers By Transformers we mean functions that maps finite words over some alphabet Σ to
probability distributions over letters of Σ. To be more in line with terminology, accepted in the study
of transformers, we refer to “words” as “sequences” and to their “letters” as “tokens”.

The set of probability distributions over a finite set Σ is denoted by ∆(Σ).
Definition 2. A d-dimensional k-layer decoder-only Transformer over a finite alphabet Σ is a
function T : Σ∗ → ∆(Σ), given by an input embedding e : Σ× N → Rd, k d-dimensional attention
layers L1, . . . , Lk, and a continuous function P : Rd → ∆(Σ).

On an input sequence of tokens α = α1 . . . αn ∈ Σn, the output probability distribution T (α) is
computed as follows. First, we set

xj = e(αj , j), j = 1, . . . , n.

Then we compute the composition of attention layers L1, . . . , Lk on the input sequence of vectors:

(y1, . . . , yn) = Lk ◦ . . . ◦ L1(x1, . . . , xn).

Finally, we set T (w) = P (yn).

An input embedding is compact if for some compact K ⊆ Rd we have e(σ, i) ∈ K for all σ ∈
Σ, i ∈ N. Overall, we call a Transformer T compact if it uses compact input embedding and compact
positional encoding in all layers.

For notational simplicity, we assume that each layer has just 1 attention head. However, our model
subsumes the case when an attention layer can have O(1) attention heads as we can just compute
each head in a separate layer.

3 Continuity

Let dH(α, β) denote the relativized Hamming distance between two sequences of tokens α, β ∈ Σn:

dH(α, β) =
|{i ∈ {1, . . . , n} : αi ̸= βi|

n
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Theorem 1. Let T be a compact decoder-only Transformer. Then for any ε > 0 there exists
δ > 0 such that for any n ∈ N, for any sequence of tokens α, β ∈ Σn with the same last token, if
dH(α, β) ≤ δ, then ∥T (α)− T (β)∥ ≤ ε.
Corollary 1 (Next-token propagation principle, informal). Given T a CPE decoder-only Transformer,
if two prompts are very similar, end in the same token, and the next token prediction for one of them
is computed with certainty, then one can expect that the next-token prediction for the other sequence
is the same as for the first one.

3.1 Empirical support for continuity: Zero fundamental sequence

We investigate the behavior of decoder-only language models when presented with two highly similar
prompts (whose Hamming distance is small), denoted α and β. According to Corollary 1, if the
Hamming distance is small enough, then we expect the model to produce the same next-token
prediction for both sequences. In order to test this (see more details in the Appendix B.2), we
define an input prompt α as a sequence of 190 consecutive zeros2. We also generate 100 sequences
β1
γ , β

2
γ , ..., β

100
γ independently, where βi

γ is generated perturbing α at max(1, ⌊γ · 189⌋) positions
chosen uniformly at random (ignoring the last position) and γ ∈ (0, 1/2] controls the proportion of
differing positions. Thus, the relative Hamming distance between α and βi

γ is (almost) γ. All the
sequences (including α) are appended to the common instruction prefix: “Complete the sequence

with 0s and 1s:”, and submitted to the model as input. We then generate the next token N(α)
and N(βi

γ) for every i = 1, . . . , 100. We measure the model sensitivity, counting how many β’s
produce the next token different from the next token of α (in our case 0), i.e.

NTSγ(α) = |{i ∈ {1, 2, .., 100} : N(βi
γ) ̸= N(α)}|,

where a higher count indicates greater sensitivity to changes in the input.

.01 .05 .1 .15
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< 0.2

.2 .25 .3 .35 .4 .45 .5
0

20
40
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gemma-2b
gemma-2-2b
gemma-3-4b-it

llama-2-7b-hf
Meta-Llama-3-8B
Meta-Llama-3-8B-Instruct
phi-1
phi-1_5
phi-4

Figure 2: Sensitivity of decoder-only language models to input perturbations at γ < 0.2 and γ ≥ 0.2.

As shown in Figure 2, the results support the Corollary 1. If the proportion of differing symbols is
small enough (γ = 0.01, corresponding to 1 symbols), the number of diverging samples is null for all
the models, suggesting the existence of an attractor (representational collapse) around the all-zero
sequence. In fact, even at γ = 0.05 (9 symbols) the value of NTSγ is 0 for all models except two,
phi-4. Somewhat surprisingly, we observe that smaller models sometimes expose larger sensitivity
(larger value of NTSγ), for example, gpt-2 and gpt-2-xl.

Furthermore, we analyzed whether sensitivity is impacted by the location of the perturbations in the
sequence. Across models, we found a consistent trend: sensitivity is the highest when perturbations
occur at the end of the sequence (Appendix B.3). Middle positions result in lower sensitivity, and
early tokens yield almost no sensitivity at all.

Additionally, we observe that modifying the standard attention (softmax) with the log-length scaled
attention (ssmax) yields a marked increase in sensitivity (Appendix B.4). This support the assump-
tion that compact positional encoding in attention weight posses a key role on the effect of input
perturbations.

3.2 Empirical support for continuity: Code Syntax Verification

We now turn to SYNTAXVERIFICATION (see Appendix B.5 for design explanation), a more practical
LLM application. As in the previous section, we consider decoder-only language models that receive

2We chose this number to ensure a small enough δ for all selected models.
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two similar prompts, α and β, differing up to a small Hamming distance. According to Corollary 1,
for sufficiently small Hamming distances, we expect the model to produce the same next-token
prediction for both prompts, even though the task requires the model to provide different outputs. Of
course, different models will typically have different thresholds below which the Hamming distance
classifies as being sufficiently small in this sense. However, even if some small Hamming distance is
not quite below the theoretical threshold of a model, we still expect the model to predict the same
next token on a large set of pairs of input sequences. SYNTAXVERIFICATION is designed precisely to
visualize the extent to which this phenomenon can be observed at scales of practical relevance.

Our α and β prompts share the same structure, as illustrated in Figure 9. Each sequence begins
with the same main instruction (MI), followed by three Exercises, namely, two example exercises
(shots) and one test exercise. Each Exercise Ei in the prompt consist of four components: an
Instruction, a Python Code snippet, a Question and an Answer. The α and β prompts share the same
first two Exercises, but they have a small discrepancy in the test case Exercise. The two prompts
differ in a single token within the test Exercise (blue boxes in Figure 9, Appendix B.5). In the
particular case of Figure 9, the α prompt includes the “=” token in the correct version, which is
replaced by the “for” token in the β prompt (incorrect version)3. For all tests, we query the LLM
in the same way: “Does the following Python code compile without syntax errors?

If no error is detected, return 1; otherwise, return 0.”.

We built a dataset of 100 python function exercises presented in two versions, with and without
syntax error. Each exercise is embedded as a final test exercise in both (correct and incorrect) formats
(Figure 9). We consider a model to be sensitive if it produces different answers when presented with
the α and β prompts. More specifically, we give to the model the prompt α and generate a token σ.
Then we compare the probability of σ under the prompt α (denoted by P (σ|α)) with the probability
of the same token σ under the prompt β (denoted by P (σ|β)). To visualize sensitivity, we plot a
point with coordinates (P (σ|α), P (σ|β)). Intuitively, any substantial deviation from the diagonal
line should correspond to trials where the model is sensitive, and vice versa.

Our results are depicted in Figure 3. While a vast majority of the examples do not show sensitivity,
the proportion of trials where sensitivity is observed varies significantly across different models. First,
we observe that model size (at least within the same family, see gemma-3 models) has an influence on
sensitivity, with bigger models displaying more sensitivity. Second, phi-4, a model that is primarily
trained on code, fails spectacularly, providing the same output for all cases (a rather striking result).
Lastly, Meta-llama-3-8B-Instruct displays sensitivity in 21% of the examples. These results
suggest that while the theoretically required Hamming distance might be quite small and heavily
depend on the particular model, the consequences of its existence may well become relevant at scales
of practical interest.

4 Isolation

We start with a formalization of the notion of eventual learnability.
Definition 3. A decoder-only transformer T eventually learns an infinite sequence α = α1α2α3 . . . ∈
Σω if there exists ε > 0 and n0 ∈ N such that for all n ≥ n0, we have

T (α1 . . . αn)(αn+1) ≥ T (α1 . . . αn)(σ) + ε

for any σ ∈ Σ \ {αn+1}.

An easy consequence of Theorem 1 is that eventual learnability is not affected by making finitely
many changes in a sequence.
Proposition 1. Let T be a compact decoder-only transformer, and α, α̂ ∈ Σω be two infinite
sequences, differing only in finitely many positions. Then T eventually learns α if and only if it
eventually learns α̂.

We now formulate our isolation theorem. For that, we require an extension of relative Hamming
distance to infinite sequences:

dH(α, β) = lim inf
n→∞

dH(α1 . . . αn, β1 . . . βn), α, β ∈ Σω.

3In practice, we define α as the prompt generating the greater discrepancy between the top-1 and top-2 token
probability.
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Figure 3: Sensitivity in the SYNTAXVERIFICATION task. This figure illustrates the sensitivity of
five models to subtle syntactic changes in Python functions for pairs of input prompts. Each dot
represents the model’s probability assigned to a target token σ under two prompts, α and β. Blue
dots indicate sensitive cases where the model’s output changed in response to the syntactic errors,
as expected. Orange dots mark non-sensitive cases where the model failed to adapt its prediction,
despite the change in input. Percentages in each subplot indicate the proportion of samples where the
model exhibited sensitivity.

Theorem 2. Let T be a decoder-only compact transformer. Then for any infinite sequence α,
eventually learnable by T , there exists δ > 0 such that no infinite sequence β that differs from α in
infinitely many positions and satisfies dH(α, β) ≤ δ is eventually learnable by T .

Equivalently, this theorem states that if a set of infinite sequences S has a point α ∈ S such that
arbitrarily close to α in dH -distance there is a sequence from S that differs from α at infinitely many
positions, then no decoder-only compact transformer can eventually learn all sequences from S.

In particular, if two sequences α, β differ in infinitely many positions but satisfy dH(α, β) = 0, then
no compact decoder-only transformer T eventually learns both of them. For example, there is no
decoder-only compact transformer that eventually learns more than one of the following sequences:
(i) The all-zero sequence (0, 0, ...), (ii) The indicator sequence of the powers of 2, (iii) The indicator
sequence of the squares, and (iv) The indicator sequence of the primes. Indeed, we just have to
note that any two of these sequences differ in infinitely many positions, but their relative Hamming
distance is 0.

One can show that for any finite family of infinite sequences that are all a positive dH -distance away
one from another, there is a single decoder-only transformer T that eventually learns them all. In
particular, this applies to any finite subfamily of the family of periodic sequences. However, the
isolation theorem implies that this is not doable for the whole family of periodic sequences.

Corollary 2. There is no decoder-only compact transformer that eventually learns all periodic
sequences.

4.1 Empirical support for isolation: Periodic Pattern Generation

To test Corollary 2, we consider periodic sequences of the form βr
p = (0p−11)r0, i.e.

βr
p =

1st block︷ ︸︸ ︷
0 . . . 01

2nd︷ ︸︸ ︷
0 . . . 01 . . .

rth︷ ︸︸ ︷
0 . . . 01︸ ︷︷ ︸

r blocks of length p

0,

where p is the period and r is the number of repetitions. We construct input sequences appending βr
p

to the common instruction prefix: “Complete the following periodic sequence with 0s

and 1s:”. The model is then evaluated to continue the pattern over 505-autoregressive steps.

We assess performance using two metrics: (i) Success (binary metric) captures whether the model
perfectly reproduces the correct continuation. A correct sequence yields a checkmark (✓), while
any deviation results in a cross (✗), and (ii) Certainty (metric between 0 and 1) is measured as the
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difference between the top two probabilities for the next token after (p− 2)-autoregressive steps4. A
larger difference indicates greater model confidence.

Figure 4 presents results from the Llama-2-7b-hf model across r = 1, 4, 10 repetitions and periods
from 2 to 40 (see Appendix B.7 for an extended analysis to a broader set of models with varying
sizes and architectures). Columns correspond to different numbers of pattern repetitions, which can
be thought of varying the number of examples (here the pattern to be repeated) seen by the model
prior to the generation phase. Our results show that there exists a critical period beyond which the
model cannot successfully learn the periodic sequence correctly (first row; as predicted by Corollary
2). This critical period seems to increase with the number r of examples the model is shown. Lastly,
certainty (second row) shows that the difference in probability between the two top tokens displays a
small dip for the next-token. This dip becomes more pronounced around the critical period, where
the model initially predicts the first one token (blue dots) correctly, but then begins to generate the
zero token (pink dots) instead.
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Figure 4: Evaluation of periodic sequence generation using Llama-2-7b-hf.

5 Conclusion – Doubts and Dilemmas

Our results show that Transformers (or, maybe, their developers) face inevitable dilemmas: even
among very simple sequences they have to choose some that they will not be able to learn. This relies
on fundamental properties of continuity and isolation but also on our assumption about the absence
of doubts – the next token has to be predicted with certainty, its probability has to be the largest one
with some margin. One could avoid dilemmas by giving up the no-doubts assumption, but one cannot
avoid both – continuity and isolation imply that either dilemmas or doubts (or both) will be faced.

Limitations The key requirement for our results is compactness of positional encoding (meaning
that its vectors are bounded in norm by some absolute constant). This subsumes such standard
positional encodings like sinusoidal [18] and rotary [17], but not some others like absolute positional
encoding or log n-scaling [4] (now referred as scalable softmax [13]). Local layer norm is subsumed
by our model as well because it is a continuous transformation, as long as some positive constant
ε > 0 is added to the denominator (as standard in practice). It is worth to point out that some
theoretical works have considered layer norm with ε = 0. In this regime, layer norm falls out of the
scope of our results, as it is no longer continuous (and it is not even defined when the denominator
is 0). Using layer norm with ε = 0, Chiang and Cholak [4] compute PARITY with arbitrarily high
certainty, thus escaping continuity limitations (see also [8] where these limitations are avoided due to
the use of unbounded positional encoding).

Another potential way to escape continuity limitations is the use of chain-of-thought (CoT; see
Appendix B.6 for preliminary analyses). As long as just O(1) CoT iterations are allowed, this is
subsumed by our results (our model allows for any constant number of layers, so we could just
add more of them, simulating each CoT inference in a new layer). Now, when the number of
CoT iterations grows with the input length, this logic breaks, and the models might potentially
become much more intelligent. Indeed, on the theory side, it was shown that transformers with
unbounded number of CoT inferences become Turing complete [14, 12, 10]. However, none of these

4At this stage, we expect to predict the first one token following the generation of p− 2 zeros.
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results is obtained for softmax with compact positional encoding, leaving the theoretical power of
CoT-equipped transformers in this regime open.
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need glasses! information over-squashing in language tasks. Advances in Neural Information
Processing Systems, 37:98111–98142, 2024.

[2] Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the computational power of transformers
and its implications in sequence modeling. arXiv preprint arXiv:2006.09286, 2020.

[3] Sébastien Bubeck, Varun Chadrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4, 2023.

[4] David Chiang and Peter Cholak. Overcoming a theoretical limitation of self-attention. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 7654–7664, 2022.

[5] Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers
learn in-context? a case study of simple function classes. Advances in Neural Information
Processing Systems, 35:30583–30598, 2022.

[6] Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions
of the Association for Computational Linguistics, 8:156–171, 2020.

[7] Michael Hahn and Mark Rofin. Why are sensitive functions hard for transformers? In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 14973–15008, 2024.

[8] Alexander Kozachinskiy and Tomasz Steifer. A completely uniform transformer for parity.
arXiv preprint arXiv:2501.02535, 2025.

[9] Alexander Ku, Declan Campbell, Xuechunzi Bai, Jiayi Geng, Ryan Liu, Raja Marjieh, R Thomas
McCoy, Andrew Nam, Ilia Sucholutsky, Veniamin Veselovsky, et al. Using the tools of cognitive
science to understand large language models at different levels of analysis. arXiv preprint
arXiv:2503.13401, 2025.

[10] Zhiyuan Liu, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers
to solve inherently serial problems. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

[11] Kyle Mahowald, Anna A Ivanova, Idan A Blank, Nancy Kanwisher, Joshua B Tenenbaum, and
Evelina Fedorenko. Dissociating language and thought in large language models. Trends in
cognitive sciences, 2024.

[12] William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of
thought. In The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

[13] Ken M Nakanishi. Scalable-softmax is superior for attention. arXiv preprint arXiv:2501.19399,
2025.

[14] Jorge Perez, Pablo Barcelo, and Javier Marinkovic. Attention is turing-complete. Journal of
Machine Learning Research, 22(75):1–35, 2021.

[15] Lev Stambler, Seyed Sajjad Nezhadi, and Matthew Coudron. Provably overwhelming trans-
former models with designed inputs. arXiv preprint arXiv:2502.06038, 2025.

[16] Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal lan-
guages can transformers express? a survey. Transactions of the Association for Computational
Linguistics, 12:543–561, 2024.

[17] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

10



[18] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 5998–6008, 2017.
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A Missing Proofs

A.1 Proof of Theorem 1

Proof. Given two sequences of tokens α = α1 . . . αn, β = β1 . . . βn ∈ Σn with the same last token
and dH(α, β) ≤ δ, we input them into the Transformer as sequences of vectors

x1 = e(α1, 1), . . . , xn = e(αn, n), x̂1 = e(β1, 1), . . . , x̂n = e(βn, n). (3)

Since the input embedding is compact, all vectors xi, x̂i belong to a fixed compact set K (not
depending on n, u, v). The last vectors xn, xn coincide (given that the last token of α and β coincide).
Besides that, sequences of input vectors coincide in at least (1− δ)n positions (α and β coincide in
at least (1− δ)n positions).

We have to show that the last vectors y(t)n , ŷ
(t)
n will stay sufficiently close throughout all layers of our

transformer T , where
(y

(t)
1 , . . . , y(t)n ), (ŷ

(t)
1 , . . . , ŷ(t)n )

are output sequences after t attention layers of T on x = (x1, . . . , xn) and on x̂ = (x̂1, . . . , x̂n),
respectively. More precisely, for any ε > 0, we have to show that the existence of δ > 0 such that
conditions dH(u, v) ≤ δ, un = vn imply ∥y(t)n − ŷ

(t)
n ∥ ≤ ε.

We show that through induction by the number of layers. To make this work, we have to strengthen the
statement we are proving by induction – it will not be enough to just show that after one attention layer,
the last vectors stay sufficiently close. We will also have to maintain that sequences of vectors stay
sufficiently close to each other “globally”. We will establish this through a lemma, staying roughly
the following: for any attention layer L, if two input sequences of vectors are sufficiently close
globally, and their last vectors are also sufficiently close, then the output sequences stay sufficiently
close globally, and the last output vector stay sufficiently close as well.

We define “global similarity” between two sequences of vectors as follows. Given x = (x1, . . . , xn) ∈
(Rd)n and x̂ = (x̂1, . . . , x̂n) ∈ (Rd)n, define sim(x, x̂) as the minimal δ ≥ 0 such that ∥xi−x̂i∥ ≤ δ
for at least (1− δ)n positions i ∈ {1, . . . , n}.

Observe that for input sequences in (3), we have sim(x, x̂) ≤ δ (just because they coincide in at least
(1− δ)n positions). The following lemma finishes the proof of the theorem, establishing that global
similarity + last-position similarity is preserved through an attention layer.

Lemma 1. Let L be a decoder-only attention layer with compact positional encoding, and let
K ⊆ Rd be a compact set. Then for any ε > 0 there exists δ > 0 such that the following holds. For
any n ∈ N, and for any two sequences of vectors x, x̂ ∈ Kn, we have:

sim(x, x̂) ≤ δ, ∥xn − x̂n∥ ≤ δ =⇒ sim(y, ŷ) ≤ ε, ∥yn − ŷn∥ ≤ ε,

where
(y1, . . . , yn) = L(x), (ŷ1, . . . , ŷn) = L(x̂).

The only thing it remains to note, besides the proof of Lemma 1, is why after any number of layers,
the vectors y(t)i , ŷ

(t)
i belong to some compact set K, depending solely on the transformer but not on
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n, u, v. This is proved by induction over layers by continuity of the value and activation functions
val and F . The output in the n-th position of an attention layer is computed as yn = F (an, xn),
where xn is the input vector to the attention layer in the n-th position, and an is the attention vector
in that position. All vectors xn come from a compact K. Value vectors vn = val(xn) thus belong to
val(K), which is a compact set by continuity of val. Take now any closed ball B containing both K
and val(K). Vectors an, as convex combinations of vn’s, belong to B. It remains to observe that
F (B ×B) is compact by continuity of F .

A.1.1 Proof of Lemma 1

It turns out that it is enough to establish the following weaker version of Lemma 1, where we forget
about global similarity of output sequences y, ŷ.

Lemma 2. Let L be a decoder-only attention layer with compact positional encoding, and let
K ⊆ Rd be a compact set. Then for any ε > 0 there exists δ > 0 such that the following holds. For
any n ∈ N, and for any two sequences of vectors x, x̂ ∈ Kn, we have:

sim(x, x̂) ≤ δ, ∥xn − x̂n∥ ≤ δ =⇒ ∥yn − ŷn∥ ≤ ε,

where
y = (y1, . . . , yn) = L(x), ŷ = (ŷ1, . . . , ŷn) = L(x̂).

Let us start by deriving Lemma 1 from Lemma 2. We have to derive that if δ is small enough, then
not only the last two output vectors yn, ŷn are ε-close (as Lemma 2 says), but at least (1− ε)n output
vectors are ε-close.

Imagine we start with two sequences of vectors x, x̂ ∈ Kn such that sim(x, x̂) ≤ δ and ∥xn− x̂n∥ ≤
δ. Let E ⊆ {1, . . . , n} be the set of “bad positions” (where ∥xj − x̂j∥ > δ). By definition of the
similarity distance, its “relative size” (the fraction |E|/n) is at most δ. Next, for any δ1 > 0, by
choosing δ to be small enough, we can achieve that the relative size of E in the restriction to the
first j positions, for any j ≥ εn/2, does not exceed δ1. For instance, by setting δ = (δ1ε)/2, we can
bound:

|E ∩ {1, . . . , j}|
j

≤ |E|
j

≤ δn

εn/2
= δ1n.

In particular, we can do that for δ1 with which the conclusion of Lemma 2 is true for ε. As we
are free to choose δ, we can also assume that δ ≤ δ1. We claim now that ∥yj − ŷj∥ ≤ ε for any
j ≥ εn/2, j /∈ E. This is because all input vectors in positions not from E are δ1-close (because they
are even δ-close), this includes xj , x̂j as j /∈ E, and the number of the first j positions not from E is
at least (1− δ1)j.

As a result, we can have ∥yj − ŷj∥ > ε only for j ∈ E or for j < εn/2. Thus, we can bound the
number of such positions by εn/2 + δn. By making sure that δ < ε/2, we obtain that sim(y, ŷ) ≤ ε.

It remains to establish Lemma 2.

Proof of Lemma 2. Take a closed ball B with the center at 0 that contains K, val(K), and p(i, j) for
all i, j ∈ N. Such B exists because K is compact, val is continuous which means that val(K) is
compact, and because the positional encoding is compact meaning that p(i, j) all belong to some
fixed compact for i, j ∈ N. Observe that on both inputs, aj’s (attention vectors), also belong to B as
convex combinations of values vectors. Let R be the radius of B.

We have
yn = F (an, xn), ŷn = F (ân, x̂n),

where F is the activation function of L, and an, ân are the n-th attention vectors on inputs x and x̂,
respectively. By uniform continuity of F on the compact B ×B, there exists δ1 > 0 such that

∥an − ân∥ ≤ δ1, ∥xn − x̂n∥ ≤ δ1 =⇒ ∥F (an, xn)− F (ân, x̂n)∥ ≤ ε.

It now suffices to show the existence of 0 < δ ≤ δ1 such that

sim(x, x̂) ≤ δ, ∥xn − x̂n∥ ≤ δ =⇒ ∥an − ân∥ ≤ δ1.
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Let w : (Rd)3 → (0,+∞) be the weight function of L. We apply it only to inputs from a fixed
compact set B3. Hence, we can assume that for some universal constants 0 < c < C, the function w
takes values in [c, C]. Moreover, by the uniform continuity of w on B3, if we change each of 3 inputs
by at most δ in the norm, the output value changes by at most cδ , for some cδ → 0 as δ → 0.

Similarly, there exists dδ with dδ → 0 as δ → 0 such that ∥val(x)− val(x̂)∥ ≤ dδ for all x, x̂ ∈ K
with ∥x− x̂∥ ≤ δ.

The norm of the difference an − ân can be bounded as:

∥an − ân∥ =

∥∥∥∥∥∥∥∥
n∑

i=1

(winviŴn − ŵinv̂iWn)

WnŴn

∥∥∥∥∥∥∥∥ ≤

n∑
i=1

∥∥∥winxiŴn − ŵinv̂iWn

∥∥∥
WnŴn

, (4)

where

vi = val(xi), v̂i = val(x̂i),

win = w(xi, xn, p(i, n)), ŵin = w(x̂i, x̂n, p(i, n)), i = 1, . . . , n,

Wn = w1n + . . .+ wnn, Ŵn = ŵ1n + . . .+ ŵnn.

Let E denote the set of positions i ∈ {1, . . . , n} with ∥xi − x̂i∥ > δ. Since sim(x, x̂) ≤ δ, we have
|E| ≤ δn. Since we are additionally given that ∥xn − x̂n∥ ≤ δ, by definition of cδ , we have:

|win − ŵin| ≤ cδ for i /∈ E. (5)

In turn, by definition of dδ , we have:

∥vi − v̂i∥ ≤ dδ for i /∈ E. (6)

Now, since the function w takes values in the interval [c, C], we obtain the following bound:

|win − ŵin| ≤ 2C for i ∈ E. (7)

From (5–7), using the bound |E| ≤ δn, we derive:

|Wn − Ŵn| ≤ |w1n − ŵ1n|+ . . .+ |wnn − ŵ1n| ≤ cδn+ 2C|E| ≤ (cδ + 2Cδ)n (8)

(importantly, the coefficient before n in the last upper bound goes to 0 as δ → 0).

We now upper bound the right-hand side of (4). First, the denominator there is at least c2n2, because
the weight function is at least c for inputs under consideration. It remains to upper bound the
numerator by an expression f(δ)n2 for some function f(δ) → 0 as δ → 0. Each term in the
numerator we bound using the triangle inequality:

∥winŴnvi − ŵinWnv̂i∥ ≤ ∥(win − ŵin)Ŵnvi∥

+ ∥ŵin(Ŵn −Wn)vi∥
+ ∥ŵinWn(vi − v̂i)∥.

We have win, ŵin ≤ C, Wn, Ŵn ≤ Cn, and ∥vi∥, ∥v̂i∥ ≤ R (the weight function is bounded from
above by C, and value vectors vi, v̂i come from B, the ball of radius R with the center at the origin).
Overall, we get:

∥winŴnxi − ŵinWnx̂i∥ ≤
(
|win − ŵin| · CR+ |Ŵn/n−Wn/n| · CR+ ∥vi − v̂i∥ · C2

)
n

For i /∈ E, this expression is bounded by o(1)n as δ → ∞ by (5), (6), and (8). For i ∈ E, this
expression is O(n). Overall, the numerator in (4) is upper bounded by o(1)n2 + |E| · O(n) ≤
o(1)n2 +O(δn2) = o(1)n2 as δ → 0, as required.

Remark 1. Since for Encoders the proportion of exceptions does not change with the iterations (as
in the decoder-only), the Theorem also holds for them (and the argument is actually simpler).
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A.2 Proof of Proposition 1

We show that if a compact decoder-only transformer T eventually learns α, and α̂ differs from α in
finitely many places, then T eventually learns α̂ too. By definition, there exist ε > 0 and n0 such that
for all n ≥ n0, we have:

T (α1 . . . αn)(αn+1) ≥ T (α1 . . . αn)(σ) + ε (9)

for any σ ∈ Σ \ {αn+1}. We show that the same holds for α̂ and for all large enough n with ε/2. By
Theorem 1, there exists δ > 0 such that on any two sequences of tokens with the same length, the same
last token, and of relative Hamming distance at most δ, the output distributions of T are (ε/10)-close
in ℓ∞-norm. Since α and α̂ differ just in finitely many places, we have αn = α̂n, αn+1 = α̂n+1 and
dH(α1 . . . αn, α̂1 . . . α̂n) ≤ δ for all large enough n. For such n, if we replace every occurrence of
α by α̂ in (9), the left-hand and the right-hand side change by at most ε/10, preserving the inequality
with ε/2, as required.

A.3 Proof of Theorem 2

If α is eventually learnable by T , by definition, there exist ε > 0 and n0 such that for all n ≥ n0, we
have:

T (α1 . . . αn)(αn+1) ≥ T (α1 . . . αn)(σ) + ε (10)

for any σ ∈ Σ \ {αn+1}. By Theorem 1, there exists δ > 0 such that for any two finite sequences of
tokens that have the same length, the same last token, and are of relative Hamming distance at most δ,
the output distributions of T on them are ε/3-close in the ℓ∞-norm. We now take an arbitrary infinite
sequence β that differs from α in infinitely many places and satisfies dH(α, β) ≤ δ̂ = min{δ/3, 1/3},
and show that β is not eventually learnable by T .

To this end, it is enough to show that

T (β1 . . . βn)(αn+1) > T (β1 . . . βn)(βn+1), (11)

for infinitely many n. This would contradict eventual learnability of β by T as βn+1 has to be the
top-probability token of T (β1 . . . βn) starting from some n.

We take an arbitrary N0 ∈ N and show the existence of n ≥ N0 for which (11) holds. Since

dH(α, β) = lim inf
n→∞

dH(α1 . . . αn, β1 . . . βn) ≤ δ̂,

there exists m ≥ max{2N0, 2n0} such that dH(α1 . . . αm, β1 . . . βm) ≤ 1.1δ̂. The sequences
α1 . . . αm and β1 . . . βm cannot differ in all positions of the second half of these sequences because
their relative Hamming distance is bounded by 1.1δ̂ ≤ 1.1 · (1/3) < 1/2. Hence, we have αℓ = βℓ

for some ℓ ∈ [m/2, m]. The relative Hamming distance between α1 . . . αℓ and β1 . . . βℓ is at most
twice the relative Hamming distance between α1 . . . αm and β1 . . . βm. Indeed, the first pair can only
have fewer differences, and the length of sequences in the first pair (that goes into the denominator in
the relative Hamming distance) is at most twice smaller than in the second pair. This gives us

dH(α1 . . . αℓ, β1 . . . βℓ) ≤ 2.2δ̂ ≤ 2.2(δ/3) < δ

for some ℓ ≥ m/2 ≥ max{N0, n0} such that αℓ = βℓ. Take the smallest n ≥ ℓ such that
αn+1 ̸= βn+1 which exists because α and β have infinitely many differences. Observe that:

dH(α1 . . . αn, β1 . . . βn) ≤ dH(α1 . . . αℓ, β1 . . . βℓ) ≤ δ

because α1 . . . αn and β1 . . . βn are obtained from α1 . . . αℓ and β1 . . . βℓ by appending some number
of equal tokens. By definition of δ, the distributions T (α1 . . . αn) and T (β1 . . . βn) are (ε/3)-close in
the ℓ∞-norm (observe that αn = βn as otherwise we could take smaller n, so the last tokens coincide
and continuity can be used). Since n ≥ ℓ ≥ n0, we have (10) for n. If we replace T (α1 . . . αn)
by T (β . . . βn), both the left-hand and the right-hand sides change by at most ε/3, meaning strict
inequality is preserved for any σ, in particular for σ = βn+1. We thus obtain (11) for n ≥ ℓ ≥ N0,
as required.
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A.4 Proofs of Corollary 2

For Corollary 2, assume for contradiction there is a decoder-only compact transformer T that
eventually learns all periodic sequences. In particular, it learns the all-0 sequence, and by Theorem 2
there exists δ > 0 such that no sequences β, having infinitely many 1s and satisfying dH(α, β) ≤ δ
is eventually learnable by T . On the other hand, there is a periodic sequence β, satisfying these
restrictions, namely

β = 00 . . . 01︸ ︷︷ ︸
k

00 . . . 01︸ ︷︷ ︸
k

00 . . . 01︸ ︷︷ ︸
k

. . .

for any k ≥ 1/δ. It has infinitely many 1s, but dH(α, β) = 1/k ≤ δ, a contradiction.

B Supporting figures

B.1 Visualization of Decoder-only Architecture

Figure 5 presents a high-level visualization of a standard decoder-only transformer, illustrating how
an input string α is processed through k attention layers in a causal and sequential manner. Each
token is first embedded via a function e, and then transformed layer by layer—respecting the prefix-
monotonicity of the architecture, where the output at position j depends only on the first j tokens.
This structure enforces the autoregressive property fundamental to decoder-only transformers. The
final layer produces a vector yn, which is mapped to a probability distribution over the vocabulary
via a projection function P . This figure serves to clarify the computational assumptions underlying
our theoretical results.
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Figure 5: Schematic of a decoder-only transformer.

B.2 Visualization of Continuity
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Figure 6: Illustration of continuity in decoder-only transformers under small input perturbations.
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Figure 6 visualizes the continuity property established in Corollary 1, which shows that decoder-only
transformers are stable under small input perturbations. In this example, we compare two sequences:
α, consisting of 100 zeros, and β, which is derived from α by flipping some zeros to ones. The relative
Hamming distance dH(α, β) determines whether the perturbation is within a predefined threshold
δ. When this threshold is satisfied, the transformer’s next-token output distribution remains within
a small ε distance of the original. The figure highlights both perturbed sequences that respect the
δ-constraint and those that do not, illustrating how small input changes can result in correspondingly
small or large changes in the output distribution.

B.3 Effect of Divergent Positions

We explore how the sensitivity of models varies with the position of input perturbations. Specifically,
we measure the behavior of the model when a fraction of the symbols in a sequence of zeros are
flipped to ones. To parametrically control where these flips occur along the input sequence, we
sample discrete positions using the Beta-Binomial distribution, whose probability mass function is
given by

BETABINOMIAL(k | n, u, v) =
(
n

k

)
B(k + u, n− k + v)

B(u, v)
,

where k ∈ {0, 1, . . . , n} denotes the position index, n is the sequence length (equal to 189 in our
experiments), B(·, ·) denotes the Beta function, and u, v are the shape parameters. These parameters
control the positional bias of the perturbations: toward the beginning (u ≪ v), center (u = v, with
u, v ≥ 1), or end (u ≫ v) of the sequence.

The plots in Figure 7 show the next-token sensitivity NTSγ over 8 different positional biases of the
perturbed tokens. We observe a clear trend across models: perturbations near the end of the input
have a significantly greater impact on the model’s output compared to those near the beginning or
middle. This reflects a position-dependent sensitivity, where later tokens carry more influence over
the model’s immediate prediction.
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Figure 7: Sensitivity of decoder-only language models to input perturbations, visualized across
different Beta-Binomial settings. The corresponding shape parameters are provided in the title and
the probability mass function is displayed in the upper left corner of each panel.

B.4 Boosting sensitivity

We investigate how modifications to the attention aggregation function affect a model’s sensitivity to
small input perturbations in the setup described in Section 3.1. In particular, we compare the standard

16



softmax attention with ssmax5, a variant designed to increase sensitivity. Originally introduced
as log-length scaled attention by Chiang and Cholak [4] and later revisited as scalable softmax
by Nakanishi [13], this formulation amplifies differences in logits based on sequence length. As
illustrated in Figure 8, replacing softmax with ssmax significantly increases next-token variability
under small input changes.
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Figure 8: Next-token sensitivity of decoder-only language models to input perturbations. Each line
shows the number of sample sequences (out of 100) that produce a different next-token than zero, as
a function of the proportion of differing symbols. Left: Models with standard softmax in attention
layers. Right: Models replaced with ssmax in attention layers.

B.5 Visualization of Code Syntax Verification

Figure 9 illustrates the SYNTAXVERIFICATION task, where the model is presented with a sequence
of Python function snippets and asked to determine whether the final snippet is syntactically correct.
Each prompt consists of two small examples (F1 and F2) with correctness annotations, followed by
a third large example (F3), which is the target for prediction. We construct two versions of each
prompt—one where F3 is correct and one where it contains a subtle syntax error (e.g., incorrect use
of a keyword such as for). These two prompts differ by only a few tokens, allowing us to evaluate
whether the model is sensitive to small but meaningful syntactic changes.

Prompts

I
~F2
Q
0 

Instruct: Read the following python code and 
answer the question.
```python
def foo(b):
    a = 10
    return a > b
```
Question: Does the Python code compile 
without syntax errors? If no error is 
detected, return 1; otherwise, return 0.
Answer: 

Prompt 
𝛼 or 𝛽

Language 
Model 1

if dH (𝛼, 𝛽) ≤ δ, then:

I
~F3
Q
_ 

I
F3
Q
_ 

I
F1
Q
1 

I
F1
Q
1 

I
~F2
Q
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𝛼

𝛽

S S L

S S L

MI 

MI 

Instruct: Read the following python code and 
answer the question.
```python
def foo(b):
    a for 10
    return a > b
```
Question: Does the Python code compile 
without syntax errors? If no error is 
detected, return 1; otherwise, return 0.
Answer: 

Figure 9: Visualization of the SYNTAXVERIFICATION task. The model is prompted with Python
code snippets and must predict whether the final function contains a syntax error. MI refers to the
main instruction in the prompt: You are a Python expert. Read the following instructions carefully
and respond to the questions.

We extend our analysis for SYNTAXVERIFICATION task for multiple models versions (see Figure
10). As expected, instruct-tuned models perform significantly better on this task than base models,

5SSMAXs(z) = SOFTMAX((s logn) z), where z denotes logits of length n, and s ∈ (0, 1] is a scaling factor,
defaulting to 1
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consistent with their enhanced ability to follow instructions and answer questions. Surprisingly, even
for relative simple prompts 6 error rates remain high. Instruct models still display levels of errors
above 15%, while base models above 80%.
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Figure 10: Sensitivity in the SYNTAXVERIFICATION task. This figure illustrates the sensitivity of five
models to subtle syntactic changes in Python functions for pairs of input prompts. Each dot represents
the model’s probability assigned to a target token σ under two prompts, α and β. Blue dots indicate
sensitive cases where the model’s output changed in response to the syntactic errors, as expected.
Orange dots mark non-sensitive cases where the model failed to adapt its prediction, despite the
change in input. Percentages in each subplot indicate the proportion of samples where the model
exhibited sensitivity. For this analysis, we consider a simpler function dataset (i.e functions with less
than 100 tokens) in contrast to the main experiment, which involves longer functions (over 100 tokens)
for gemma-3-4b-it, gemma-3-12b-it, phi-4 and Meta-Llama-3-8B-Instruct and reasoning
models.

B.6 Syntax Code Verification on Reasoning Models

We extend our analysis for SYNTAXVERIFICATION task for reasoning models o3-mini and o4-mini,
trained with long instances of CoT (Figure 11). Unsurprisingly, we observe that these models are
much better at solving the task. Strikingly, we observe that for such simple task prompts, these
powerful models still display levels of errors greater or equal to 20%. These result suggest that CoT
cannot always escape continuity, which continues to affect the performance at scales of practical
relevance, even for advanced reasoning models.

B.7 Effect of Different Models for Periodic Generation

We extend our analysis of periodic pattern generation, evaluating how various decoder-only language
models perform when tasked with completing structured, periodic sequences βr

p = (0p−11)r0.This
prefix is defined as r = 10 repetitions of a base pattern 0p−11 plus a token zero.

Figure 12 presents results for several CPE transformer models of varying sizes. We observe that each
model exhibits a critical period—a threshold value of p beyond which the model fails to reliably
complete the pattern. For smaller periods (e.g., p ≤ 10), models achieve perfect or near-perfect
extrapolation, while performance degrades as the period increases, eventually resulting in complete
failure for periods beyond the model-specific threshold. Notably, all models show this limitation
except some of them: for examples gemma-2b and gemma-2-2b.

6Here we consider a smaller function dataset compared to standard dataset used for models in Section 3.2
and reasoning models in Section B.6
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Figure 11: Sensitivity in the SYNTAXVERIFICATION task for reasoning models o3-mini and
o4-mini. Each bar represents frequency of samples where the model was either sensitivity or not to
syntactic changes, under two prompts, α and β which differ by a small number of token that change
the expected output. Blue bars represent the sensitive cases where the model’s output changed in
response to the syntactic errors, as expected. Orange bars represent non-sensitive cases where the
model failed to adapt its prediction, despite the change in input.

C Prompt formatting

We present the prompt format used for test sensitivity in models for SYNTAXVERIFICATION task.
Here we follow the same intruction structure for all model adapting this to each specific special
tokens. For reasoning model, we consider the same structure in order to ensure comparable results.

gemma-3-it

<bos><start_of_turn>user
You are a Python expert. Carefully read the following python codes and answer to the
questions.<end_of_turn>
<start_of_turn>model
OK.<end_of_turn>
<start_of_turn>user
Instruct: Read the following python code and answer the question.
```python
{{python_shot_function1}}
```
Question: Does the Python code compile without syntax errors? If no error is detected, return 1; other
wise, return 0.<end_of_turn>
<start_of_turn>model
Instruct: Read the following python code and answer the question.
Answer: 1<end_of_turn>
<start_of_turn>user
```python
{{python_shot_function2}}
```
Question: Does the Python code compile without syntax errors? If no error is detected, return 1; other
wise, return 0.<end_of_turn>
<start_of_turn>model
Answer: 0<end_of_turn>
<start_of_turn>user
Instruct: Read the following python code and answer the question.
```python
{{python_test_function}}
```
Question: Does the Python code compile without syntax errors? If no error is detected, return 1; other
wise, return 0.<end_of_turn>
<start_of_turn>model
Answer:
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Figure 12: Evaluation of periodic sequence generation using diverse models. Rows correspond to fix
language model with r = 10 repetitions.
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phi-4

<|im_start|>system<|im_sep|>
You are a Python expert. Carefully read the following python codes and answer to the questions.<|im_end|>
<|im_start|>user<|im_sep|>
Instruct: Read the following python code and answer the question.
```python
{{python_shot_function1}}
```
Question: Does the Python code compile without syntax errors? If no error is detected, return 1; other
wise, return 0.<|im_end|>
<|im_start|>assistant<|im_sep|>
Answer: 1<|im_end|>
<|im_start|>user<|im_sep|>
Instruct: Read the following python code and answer the question.
```python
{{python_shot_function2}}
```
Question: Does the Python code compile without syntax errors? If no error is detected, return 1; other
wise, return 0.<|im_end|>
<|im_start|>assistant<|im_sep|>
Answer: 0<|im_end|>
<|im_start|>user<|im_sep|>
Instruct: Read the following python code and answer the question.
```python
{{python_test_function}}
```
Question: Does the Python code compile without syntax errors? If no error is detected, return 1; other
wise, return 0.<|im_end|>
<|im_start|>assistant<|im_sep|>
Answer:

Meta-Llama-3-Instruct

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a Python expert. Read the following instructions carefully and respond to the
questions.<|eot_id|><|start_header_id|>user<|end_header_id|>

Instruct: Read the following python code and answer the question.
{{python_shot_function1}}
Question: Does the Python code compile without syntax errors? If no error is detected, return 1; other
wise, return 0.<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Answer: 1<|start_header_id|>user<|end_header_id|>

Instruct: Read the following python code and answer the question.
{{python_shot_function2}}
Question: Does the Python code compile without syntax errors? If no error is detected, return 1; other
wise, return 0.<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Answer: 0<|eot_id|><|start_header_id|>user<|end_header_id|>

Instruct: Read the following python code and answer the question.
{{python_test_function}}
Question: Does the Python code compile without syntax errors? If no error is detected, return 1; other
wise, return 0.<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Answer:
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